Indirect Radiative Forcing by Ion-Mediated Nucleation of Aerosol

نویسندگان

  • F. Yu
  • G. Luo
  • Xiaohong Liu
چکیده

A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement the IMN scheme into the Community Atmosphere Model version 5 (CAM5). Our simulations show that, compared to globally averaged results based on H2SO4-H2O binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ∼ 3, CCN burden by ∼ 10 % (at 0.2 % supersaturation) to 65 % (at 1.0 % supersaturation), and cloud droplet number burden by ∼ 18 %. Compared to BHN, IMN increases cloud liquid water path by 7.5 %, decreases precipitation by 1.1 %, and increases total cloud cover by 1.9 %. This leads to an increase of total shortwave cloud radiative forcing (SWCF) by 3.67 W m−2 (more negative) and longwave cloud forcing by 1.78 W m−2 (more positive), with large spatial variations. The effect of ionization on SWCF derived from this study (3.67 W m−2) is a factor of∼ 3 higher that of a previous study (1.15 W m−2) based on a different ion nucleation scheme and climate model. Based on the present CAM5 simulation, the 5-yr mean impacts of solar cycle induced changes in ionization rates on CCN and cloud forcing are small (∼−0.02 W m−2) but have larger inter-annual (from −0.18 to 0.17 W m−2) and spatial variations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorpti...

متن کامل

Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and look-up table

[1] Nucleation is an important source of atmospheric particles and ubiquitous ions in the atmosphere have long been known to promote nucleation. An ion-mediated nucleation (IMN) mechanism based on a kinetic model is supported by recent measurements of the excess charge on freshly nucleated particles and ion cluster evolution during nucleation events. Here we investigate the dependence of steady...

متن کامل

Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection

[1] Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei or ice nuclei constitute the largest uncertainty in climate forcing and projection. Previous IPCC reported negative aerosol indirect forcing, which does not account for aerosolconvective cloud interactions because the complex processes involved are poorly understood and represent...

متن کامل

Aerosol Cloud-Mediated Radiative Forcing: Highly Uncertain and Opposite Effects from Shallow and Deep Clouds

G.R. Asrar and J.W. Hurrell (eds.), Climate Science for Serving Society: Research, Modeling and Prediction Priorities, DOI 10.1007/978-94-007-6692-1_5, © Springer Science+Business Media Dordrecht 2013 Abstract Aerosol cloud-mediated radiative forcing, commonly known as the aerosol indirect effect (AIE), dominates the uncertainty in our ability to quantify anthropogenic climate forcing and respe...

متن کامل

Effects of Aerosols on Radiative Forcing and Climate Over East Asia With Different SO2 Emissions

It is known that aerosol and precursor gas emissions over East Asia may be underestimated by 50% due to the absence of data on regional rural and township industries. As the most important element of anthropogenic emissions, sulphur dioxide (SO2) can form sulfate aerosols through several chemical processes, thus affecting the regional and global climate. In this study, we use the Community Atmo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015